The Coprinus cinereus adherin Rad9 functions in Mre11-dependent DNA repair, meiotic sister-chromatid cohesion, and meiotic homolog pairing.

نویسندگان

  • W Jason Cummings
  • Sandra T Merino
  • Kevin G Young
  • Libo Li
  • Christopher W Johnson
  • Elizabeth A Sierra
  • Miriam E Zolan
چکیده

Mitotic sister-chromatid cohesion (SCC) is known to depend in part on conserved proteins called adherins, which although necessary for SCC are not themselves localized between sister chromatids. We have examined mitotic DNA-repair and meiotic chromosome behavior in the Coprinus cinereus adherin mutant rad9-1. Genetic pathway analysis established that Rad9 functions in an Mre11-dependent pathway of DNA repair. Using fluorescence in situ hybridization, we found that the rad9-1 mutant is defective in the establishment of meiotic homolog pairing at both interstitial and subtelomeric sites but in the maintenance of pairing at only interstitial loci. To determine the role of Rad9 in meiotic SCC, we hybridized nuclear spreads simultaneously with a homolog-specific probe and a probe that recognizes both members of a homologous pair. We found that Rad9 is required for wild-type levels of meiotic SCC, and that nuclei showing loss of cohesion were twice as likely also to fail at homolog pairing. To ask whether the contribution of Rad9 to homolog pairing is solely in the establishment of SCC, we examined a rad9-1;msh5-22 double mutant, in which premeiotic DNA replication is inhibited. The msh5-22 mutation partially suppressed the deleterious effects of the rad9-1 mutation on homolog pairing; however, pairing in the double mutant still was significantly lower than in the msh5-22 single mutant control. Because the role of Rad9 in homolog pairing is not obviated by the absence of a sister chromatid, we conclude that adherins have one or more early meiotic functions distinct from the establishment of cohesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis.

The rad11 gene of the basidiomycete Coprinus cinereus is required for the completion of meiosis and for survival after gamma irradiation. We have cloned the rad11 gene and shown that it is a homolog of MRE11, a gene required for meiosis and DNA repair in numerous organisms. The expression of C. cinereus mre11 is induced during prophase I of meiosis and following gamma irradiation. The gene enco...

متن کامل

Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination.

The Mre11/Rad50/Nbs1 (MRN) complex is required for eukaryotic DNA double-strand break (DSB) repair and meiotic recombination. We cloned the Coprinus cinereus rad50 gene and showed that it corresponds to the complementation group previously named rad12, identified mutations in 15 rad50 alleles, and mapped two of the mutations onto molecular models of Rad50 structure. We found that C. cinereus ra...

متن کامل

The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing.

Sister chromatid cohesion, mediated by cohesin complexes, is laid down during DNA replication and is essential for the accurate segregation of chromosomes. Previous studies indicated that, in addition to their cohesion function, cohesins are essential for completion of recombination, pairing, meiotic chromosome axis formation, and assembly of the synaptonemal complex (SC). Using mutants in the ...

متن کامل

Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis

During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast...

متن کامل

Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing.

Fission yeast does not form synaptonemal complexes in meiotic prophase. Instead, linear elements appear that resemble the axial cores of other eukaryotes. They have been proposed to be minimal structures necessary for proper meiotic chromosome functions. We examined linear element formation in meiotic recombination deficient mutants. The rec12, rec14 and meu13 mutants showed altered linear elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 23  شماره 

صفحات  -

تاریخ انتشار 2002